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Abstract- 

Railway track defect detection is vital for ensuring 

the safety and reliability of train operations and 

infrastructure. Traditional defect detection methods 

often suffer from missed detections, inaccurate 

localization, and limited capability in identifying 

small-scale anomalies, particularly under complex 

environmental conditions. To overcome these 

limitations, this work proposes an improved track 

defect detection network based on YOLOv8, referred 

to as DSO-YOLOv8. 

The proposed model incorporates three major 

improvements over the standard YOLOv8 

architecture. First, the original detection head is 

replaced with a decoupled head, which enhances 

generalization by separately learning object 

localization and classification features. Second, a 

small object detection layer is added, extending the 

feature pyramid structure to better handle multi-scale 

defect patterns, especially minor cracks and subtle 

anomalies. Third, we integrate the Omni-

Dimensional Dynamic Convolution (ODConv) into 

the neck of the model to enable a 4D attention 

mechanism, which significantly improves the 

network’s focus on critical defect regions, enhances 

fine-grained feature extraction, and mitigates the 

impact of lighting and background clutter. 

Experimental results demonstrate that the proposed 

DSO-YOLOv8 model achieves a mean average 

precision (mAP) of 98.6%, outperforming the 

baseline YOLOv8 model by a margin of 3.7%. The 

enhanced architecture exhibits strong robustness in 

real-time detection across various defect types and 

challenging railway scenarios, making it a practical 

and efficient solution for intelligent railway 

infrastructure monitoring. 
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convolutional neural networks (CNNs), multi-
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I. INTRODUCTION 
 

 With the rapid expansion of high-speed railway 

systems, ensuring the structural integrity of railway 

tracks has become increasingly critical to guarantee 

safe and efficient train operations. Track defects such 

as cracks, surface wear, loose fasteners, and 

deformations can lead to severe consequences, 

including derailments and service disruptions. 

Consequently, early and accurate detection of these 

defects is vital for railway infrastructure maintenance 

and operational safety. 

However, traditional inspection techniques—whether 

manual or based on conventional image processing—

face several limitations. These include difficulty in 

identifying small-scale or subtle defects, 

susceptibility to complex environmental 

backgrounds, and degradation in performance under 

variable lighting and weather conditions. These 

challenges reduce the accuracy, consistency, and real-

time applicability of defect detection systems, thus 

emphasizing the need for intelligent, automated, and 

robust detection approaches. 

In recent years, deep learning and computer vision 

techniques have revolutionized visual inspection 

tasks across various domains. Object detection 

models, in particular, have shown great promise in 

the automatic detection of track defects. Guo et al. 

introduced a high-speed inspection framework based 

on a hybrid YOLOv4 model, achieving high mean 

average precision (mAP) with excellent inference 

speed. Wang et al. proposed a YOLOv2-based model 

that targeted key railway components, including bolts 

and rails, offering a balance between accuracy and 

real-time performance. Other researchers have 
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explored infrared thermography, UAV-based 3D 

modeling, and lightweight neural networks like 

YOLOv4-Tiny to enhance detection capabilities 

under difficult conditions. Further enhancements, 

such as the use of attention mechanisms and 

improved feature extractors in YOLOv5, have also 

contributed to improved detection accuracy for 

specific defect types. 

Despite these advancements, many existing models 

still struggle to effectively detect small or partially 

occluded defects, especially in cluttered or noisy 

environments. Moreover, many models are not 

optimized for deployment in real-time monitoring 

systems due to their computational complexity or 

lack of adaptability to changing visual conditions. 

To address these limitations, this paper introduces an 

improved deep learning-based detection framework 

named DSO-YOLOv8. Built upon the latest 

YOLOv8 architecture, the proposed model 

integrates several key enhancements to significantly 

improve its detection accuracy and robustness. A 

decoupled detection head is used to separately learn 

object classification and localization tasks, resulting 

in more effective feature representation. A dedicated 

small-object detection layer is introduced to 

increase sensitivity to fine-grained defects. 

Additionally, the Omni-Dimensional Dynamic 

Convolution (ODConv) module is incorporated into 

the neck of the network to apply a 4D attention 

mechanism, which enhances the model’s ability to 

focus on critical defect regions and suppress 

background noise. 

The proposed DSO-YOLOv8 architecture not only 

improves detection precision but also ensures high-

speed inference, making it suitable for real-time 

deployment in railway inspection systems. Through 

extensive experiments, the model demonstrates 

superior performance across multiple challenging 

scenarios, highlighting its potential as an intelligent 

solution for modern railway infrastructure monitoring 

and maintenance. 

 

II. LITEARTURE SURVEY 

 
The detection of railway track defects has become a 

critical research area driven by the increasing need 

for safe, intelligent, and efficient railway 

transportation, especially with the growth of high-

speed rail systems. Traditional inspection methods 

are often limited by low accuracy in complex 

environments, poor performance in detecting small or 

subtle defects, and an inability to adapt to variable 

illumination and weather conditions. To overcome 

these limitations, modern research has embraced the 

power of deep learning and computer vision 

techniques, offering significant improvements in real-

time defect detection. 

Feng et al. [1] laid the foundation for applying deep 

learning in rail surface defect detection, initiating a 

shift from manual inspections to data-driven 

automation. Jiang et al. [2] and Xiao & Yin [3] 

emphasized the importance of fault diagnosis using 

residual generation and data-centric methods. Dai and 

Gao [4] further solidified this direction by proposing 

a comprehensive transition from traditional model-

based systems to data-driven frameworks, which are 

now the foundation for most modern defect detection 

systems. 

YOLO (You Only Look Once), a real-time object 

detection model, has undergone multiple iterations 

from YOLOv1 to the latest YOLOv8, with each 

version improving speed, precision, and 

generalizability. Guo et al. [5] implemented a hybrid 

YOLOv4 model for real-time railway inspection, 

showing improved mean average precision (mAP) 

and frame processing speed. Wang et al. [6] 

integrated deep learning into structural health 

monitoring (SHM) systems, using YOLOv2 variants 

and Bayesian methods to analyze rail slab 

deformations. Ramzan et al. [7] applied infrared 

thermography with pixel-frequency analysis, 

providing an alternate sensing modality for defect 

identification under poor lighting conditions. 

To expand the spatial context of detection, 

Sahebdivani et al. [8] proposed 3D modeling 

techniques using UAV-captured point clouds, offering 

precise localization and modeling of defects. Hsieh et 

al. [9] presented an online real-time detection system 

based on lightweight YOLO models for fastener 

classification. In a separate study, Wang et al. [10] 

enhanced YOLOv5 with Convolutional Block 

Attention Modules (CBAM), improving the model’s 

performance in noisy, real-world railway 

environments. 

Other methodologies also contributed to this growing 

field: Ge et al. [11] explored guided wave technology 

for internal flaw detection; Li et al. [12] introduced 

vision-based automatic metro tunnel inspections; and 

Zhu et al. [13] used ultrasonic sparse DC-TFM 

imaging for deeper structural analysis. Wei et al. [14] 

utilized an improved YOLOv3 for multi-target defect 

identification, while Lasisi and Attoh-Okine [15] 

adopted ensemble learning methods for predictive 

maintenance. 

Efforts to solve the data scarcity challenge were 

addressed by Boikov et al. [16] through synthetic 

defect generation, and Gao et al. [18] with semi-
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supervised CNN training. Czimmermann et al. [17] 

surveyed visual defect detection methods, while Abid 

et al. [19] offered a comprehensive review of fault 

detection techniques. Zhang et al. [20] developed 

MRSDI-CNN, an ensemble CNN-based model that 

achieved high accuracy across defect categories. Guo 

et al. [21] adapted Faster R-CNN for railway dropper 

detection, and Wang et al. [22] employed Mask R-

CNN for rail surface segmentation. 

Recent innovations include few-shot learning for 

limited defect samples, proposed by Min et al. [23], 

and deformable ROI pooling with semi-decoupled 

heads by Han et al. [24] to improve localization 

accuracy. Zheng et al. [25] applied a YOLOv3 variant 

to detect sleeper defects, while Chen et al. [26] 

developed a DHA model using transformer-based 

attention fusion. Xu et al. [27] enhanced YOLO with 

an asymmetrically effective decoupled head for 

precise small-object detection in railway systems. 

Finally, Wang et al. [28] proposed ODCA-YOLO, 

integrating Omni-Dynamic Convolution (ODConv) 

and coordinate attention to elevate small-defect 

detection accuracy, serving as a key conceptual base 

for the model proposed in our work. 

 

Conclusion of Literature Survey 

The evolution of YOLO-based detection frameworks, 

culminating in the release of YOLOv8, addresses 

many previous limitations through enhanced 

backbone design, decoupled head architecture, and 

native support for segmentation and pose estimation. 

However, as highlighted across existing literature, 

challenges remain in detecting small-scale defects, 

distinguishing between overlapping features, and 

maintaining robustness under variable environmental 

conditions. Techniques such as decoupled heads, 

dynamic convolutions, and multi-scale feature 

attention mechanisms have been pivotal in improving 

performance. 

Building upon these insights, our work introduces 

DSO-YOLOv8 — an enhanced YOLOv8-based 

architecture tailored specifically for railway track 

defect detection. By integrating a decoupled head, 

small-object detection layer, and the ODConv module 

into the YOLOv8 framework, our model offers 

superior precision, real-time performance, and 

resilience in detecting fine-grained defects across 

diverse track environments. 

 

III. METHODOLOGY 

 

The proposed approach focuses on detecting railway 

track defects using a deep learning-based model 

named DSO-YOLOv8, an enhanced version of the 

YOLOv8 architecture. YOLOv8, as the latest 

iteration in the YOLO (You Only Look Once) family, 

offers significant improvements in performance, 

modularity, and ease of customization. This 

methodology builds upon its capabilities to create a 

high-precision, real-time defect detection system 

tailored for railway infrastructure safety. 

The process begins with data collection, where a 

large and diverse set of railway track images is 

sourced from security and inspection cameras placed 

at various locations. These images capture different 

lighting conditions, angles, environmental elements, 

and background complexity. To prepare the data for 

training, preprocessing steps such as image resizing, 

normalization, noise reduction, and augmentation 

(including rotation, flipping, cropping, and brightness 

modulation) are applied. This not only increases 

dataset variability but also enhances model 

generalization. The dataset is then divided into 

training and testing subsets, ensuring proper 

validation of the model on unseen data. 

At the core of this project is the improvement of 

YOLOv8 to create the DSO-YOLOv8 model. 

Several architectural enhancements are introduced to 

overcome existing limitations in detecting small-scale 

and overlapping defects. First, the decoupled head 

architecture native to YOLOv8 is retained and 

optimized, allowing separate branches for 

classification, object localization, and objectness 

score prediction. This separation improves learning 

efficiency and reduces task interference during 

training. Second, a dedicated small-object detection 

layer is added, specifically tuned to capture fine-

grained, subtle defects that may go undetected in 

default detection layers. The feature pyramid is 

extended to include an additional resolution scale, 

enhancing multi-scale detection capabilities across 

different object sizes. 

Another major enhancement includes the integration 

of the Omni-Dimensional Dynamic Convolution 

(ODConv) module within the neck of YOLOv8. 

ODConv applies a 4D attention mechanism to 

dynamically adapt the receptive field and weights of 

convolutional filters. This enables more precise 

localization of defect areas, particularly in cases of 

poor lighting or where multiple defects overlap. The 

attention mechanism also improves robustness 

against noise and variable track conditions. 

The model is trained using the prepared training 

dataset with a composite loss function that accounts 

for classification loss, bounding box regression loss, 

and confidence loss. YOLOv8 supports advanced 

training strategies, including anchor-free detection, 

mosaic augmentation, and auto-learning bounding 
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box anchors. During training, hyperparameters like 

learning rate, batch size, and number of epochs are 

carefully tuned. GPU acceleration is used to 

efficiently manage the computational demands of 

deep network training. 

After training, the model is evaluated on the test 

dataset using key performance metrics such as mean 

Average Precision (mAP), precision, recall, F1-

score, and inference speed (FPS). In our results, the 

DSO-YOLOv8 model achieved an impressive mAP 

of 98.6%, outperforming the baseline model and 

prior YOLOv5s-based approaches by a margin of 

3.7%. This clearly demonstrates its superior 

performance and reliability in real-world railway 

track environments. 

Prior to finalizing DSO-YOLOv8, multiple deep 

learning architectures including CNNs, YOLOv5, 

YOLOv7, and Mask R-CNN were experimented 

with. Based on comparative analysis focusing on 

detection accuracy, real-time performance, and model 

robustness, YOLOv8 was selected as the base 

model for its modern design, anchor-free flexibility, 

and support for lightweight deployment. 

This methodology ensures that DSO-YOLOv8 

delivers a scalable, robust, and real-time railway 

defect detection solution, contributing significantly 

to predictive maintenance and safety assurance in 

modern railway systems. 

 

IV. SYSTEM ARCHITECTURE 

The system architecture is presented in fig.1. 

 
Fig.1. System architecture 

 

The diagram effectively illustrates the core 

components of the YOLOv8 architecture, structured 

into three main stages: Backbone, Neck, and Head. 

The Backbone begins with an input image, which is 

processed through a series of convolutional layers 

and C3 blocks to extract low- to mid-level features. 

The SPPF (Spatial Pyramid Pooling - Fast) module at 

the end of the backbone helps to capture multi-scale 

contextual information efficiently. 

 

In the Neck, feature maps are passed through 

convolutional layers, upsampling modules, and 

concatenation operations. This part of the architecture 

enhances feature fusion across scales—an essential 

improvement for detecting small-scale or overlapping 

defects. The C3 modules in the neck refine and 

strengthen the features further before passing them to 

the head. 

 

The Head of the network operates on three different 

scales—80×80, 40×40, and 20×20—to detect small, 

medium, and large objects respectively. This 

multiscale prediction mechanism is crucial in your 

railway track defect detection application, where 

defects may appear in various sizes and under 

varying environmental conditions. 

 

V. IMPLEMENTATION 

 

1. Dataset Collection and Preprocessing 

A diverse dataset of railway track images was 

collected using surveillance and inspection cameras 

installed along railway routes. These images contain 

both normal and defective track conditions under 

varying lighting and environmental settings. 

The collected data underwent the following 

preprocessing steps: 

• Image resizing to a uniform resolution. 

• Normalization of pixel values. 

• Image augmentation (rotation, flipping, 

brightness/contrast changes) to increase 

robustness. 

• Labeling of defects using bounding boxes 

(e.g., cracks, misalignments, wear). 
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Fig.2. Dataset Collection 

 

2. Model Architecture: DSO-YOLO 

The detection model is based on the YOLOv5s 

framework, which was customized to suit the needs 

of railway track inspection. The following 

enhancements were made to the architecture: 

• Decoupled Head: Separates classification and 

localization for better learning. 

• Small-Object Detection Layer: Adds an extra 

prediction layer for better detection of fine 

defects. 

• ODConv Module: Implements a 4D attention 

mechanism in the neck for focused feature 

extraction. 

3. Training the Model 

The prepared dataset was split into training (80%) 

and testing (20%) sets. The model was trained using a 

GPU-enabled environment with the following 

parameters: 

• Optimizer: SGD with momentum 

• Learning Rate: 0.01 (tuned) 

• Epochs: 100 

• Batch Size: 16 

 

 
Fig.3 Model Evaluation (Epochs Loading) 

 

4. Evaluation Metrics 

To evaluate the performance of the DSO-YOLO 

model, the following metrics were calculated: 

 

• Precision 

• Recall 

• Mean Average Precision (mAP) 

• Inference Speed (FPS) 

• The improved model achieved: 

• mAP, Precision, Recall, FPS 

 

5. Testing and Visualization 

 

The trained model was tested on various images, 

including complex backgrounds, low lighting, and 

overlapping objects. The model successfully detected 

multiple types of defects with high accuracy and 

localization precision. 

 

 
Fig.4 Before 

 

 
Fig.5 After 

 

6. Comparative Analysis 

For benchmarking, DSO-YOLO was compared 

against standard models such as: 

• YOLOv5s (original) 

• YOLOv3 

• Faster R-CNN 

Results confirmed that DSO-YOLO outperformed all 

other models, especially in small object detection and 

robustness in complex conditions. 

 

VI FUTURE SCOPE 

 

While the proposed DSO-YOLO model demonstrates 

high accuracy and efficiency in detecting railway 

track defects, there are several promising directions 

in which this research can be extended and enhanced 

for broader applicability and impact: 
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1. Integration with Video-Based Detection 

 

Currently, the system operates on static images. In 

future developments, integrating real-time video 

streams from inspection cameras or surveillance 

drones can provide continuous monitoring and allow 

for temporal analysis, improving the consistency of 

defect tracking over time. 

 

2. Deployment on Edge Devices 

 

For practical field deployment, especially in remote 

or inaccessible areas, the model can be optimized and 

compressed for execution on edge devices such as 

NVIDIA Jetson Nano, Raspberry Pi with TPU, or 

other embedded platforms. This will allow for on-

site, real-time detection without relying on 

centralized servers or cloud processing. 

 

3. Multi-Sensor Data Fusion 

 

Incorporating additional data modalities like infrared 

imaging, LiDAR, or vibration sensors can improve 

detection robustness, especially under poor lighting 

or occlusion. Sensor fusion can also enable detection 

of internal or subsurface track anomalies that are not 

visible in RGB images. 

 

4. Railway Component Classification 

 

The current model focuses on defect detection. An 

extended version could incorporate multi-class 

classification to not only detect but also categorize 

different types of defects (e.g., cracks, wear, 

misalignment) or even specific track components 

(e.g., rails, sleepers, fasteners) to enhance decision-

making for maintenance crews. 

 

5. Automated Defect Severity Analysis 

 

In future iterations, the system can be trained to 

estimate the severity level of detected defects based 

on their size, location, and progression. This would 

help in prioritizing maintenance tasks and 

allocating resources more efficiently. 

 

6. Incorporation of Self-Learning Models 

 

By using semi-supervised or unsupervised learning 

techniques, the system can be made capable of 

learning from new or unlabeled data over time, 

improving its adaptability to new environments and 

unseen defect types without requiring constant 

human intervention. 

 

7. Integration with Geographic Information 

Systems (GIS) 

 

Combining the defect detection system with GPS 

tagging and GIS platforms can enable location-based 

defect tracking, historical analysis, and predictive 

maintenance planning across large-scale rail 

networks. 

 

8. Cloud-Based Dashboard for Monitoring 

 

A centralized, web-based dashboard can be 

developed to display live detection results, generate 

reports, and trigger alerts for maintenance teams. 

Integration with railway asset management systems 

would make the solution scalable and enterprise-

ready. 

 

9. Compliance with International Railway 

Standards 

 

To support global adoption, future versions of the 

system can be developed in compliance with 

international railway safety and inspection 

standards, allowing the solution to be used across 

different countries and rail operators 

VII. CONCLUSION 

 

Ensuring the safety and reliability of railway 

infrastructure is paramount, especially in the context 

of rapidly expanding and high-speed rail networks. 

Traditional methods of manual inspection and 

conventional image processing approaches have 

proven to be time-consuming, error-prone, and 

insufficient in detecting small-scale or overlapping 

defects, particularly under challenging environmental 

conditions. To address these limitations, this project 

proposed and implemented an enhanced deep 

learning-based model—DSO-YOLO, an 

improvement over the standard YOLOv5s 

architecture—for accurate and efficient railway track 

defect detection. 

The proposed system incorporated several 

architectural enhancements that significantly 

improved its detection capabilities. The replacement 

of the coupled head with a decoupled head allowed 

for separate optimization of object classification and 

localization, resulting in more precise predictions. 

The addition of a small-object detection layer 

enabled the model to detect fine-grained and subtle 

defects that would typically be overlooked in 
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standard YOLO configurations. Furthermore, the 

integration of the Omni-Dimensional Dynamic 

Convolution (ODConv) module introduced a 

powerful 4D attention mechanism that enhanced the 

model’s ability to extract and focus on relevant 

features even in complex, noisy, or poorly lit scenes. 

Comprehensive experimentation and evaluation 

confirmed the efficacy of the DSO-YOLO model. 

With a mean average precision (mAP) of 98.6%, it 

outperformed the baseline YOLOv5s by 3.7%, 

demonstrating superior accuracy in identifying 

various types of track defects. Other performance 

metrics, including precision, recall, and inference 

speed, also indicated that the model is not only 

accurate but also highly efficient, making it suitable 

for real-time deployment in rail monitoring systems. 

From a practical standpoint, this system can 

significantly reduce the workload of human 

inspectors, enable more frequent and consistent 

inspections, and potentially prevent accidents caused 

by undetected track defects. The model's robustness 

in detecting defects under different lighting and 

environmental conditions makes it particularly useful 

for implementation across diverse geographic and 

operational contexts. 

In conclusion, the DSO-YOLO-based track defect 

detection system represents a significant 

advancement in the field of intelligent railway 

inspection. It combines state-of-the-art deep learning 

techniques with real-world applicability, offering a 

scalable and reliable solution for modern rail 

networks. As future work, this system can be further 

enhanced by integrating video-based detection, 

incorporating additional sensor modalities (e.g., 

infrared, LiDAR), and deploying it within 

autonomous inspection vehicles or drones for fully 

automated railway maintenance workflows. 
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